aminomethylated products were assayed either directly *via* the intermediate hydrochlorides, or by titration with perchloric acid.

Dimethylaminomethyl-dodecanes, b.p. 120-140°/10 Torr.

 $C_{15}H_{33}N$ Calc. C 79.21H 14.62N 6.16%Found C 79.83H 14.81N 5.48%Dimethylaminomethyl-tetradecanes, b. p. 120–140°/4Torr. $C_{17}H_{37}N$ Calc. C 79.92H 14.59N 5.48%Found C 80.48H 14.59N 5.22%

BIBLIOGRAPHY

- W. Reppe, Experientia 5, 93 (1949); Ger. Patents 839800 (1952); 909937 (1954); 931948 (1955); Brit. Pat. 803778 (1958).
- [2] W. Reppe & H. Kindler, Liebigs Ann. Chem. 582, 148 (1953).
- [3] U.S. Patents 2422631 (1947); 2497310 (1950); 3234283 (1966); 3513200 (1970).
- [4] P. Chini & S. Martinengo, Chem. Commun. 1969, 1092.
- [5] I. Wender & P. Pino, 'Organic Syntheses via Metal carbonyls' p. 100, Interscience Publishers, New York 1968; Houben-Weyl, 'Methoden der organischen Chemie', Vol. IV/2, p. 392, Georg Thieme Verlag, Stuttgart 1957.
- [6] A. F. M. Iqbal: Dissertation, Technische Hochschule Aachen 1969; F. Asinger, B. Fell & A. F. M. Iqbal, Forschungsber. des Landes Nordrhein-Westfalen Nr. 2128, Westdeutscher Verlag, Köln und Opladen 1970.

150. Determination of ΔH^0 , ΔG^0 , and ΔS^0 of the Interaction of Ions with Carrier Antibiotics by Computerized Microcalorimetry

by P. U. Früh, J. T. Clerc, and W. Simon

Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich

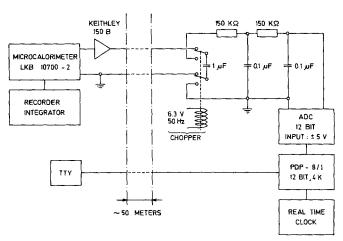
(12. VI. 71)

Summary. ΔH^0 , ΔG^0 , and ΔS^0 – and thereby the equilibrium constant of the interaction of carrier antibiotics with ions – are determined using a microcalorimeter on-line with a dedicated computer. Thermodynamic data of the interaction of monensin, macrotetrolides and valinomycin with sodium and potassium ions in methanol at 25°C are given.

1. Introduction. – In 1966 [1] we have shown that the ion selectivity of certain electrically neutral antibiotics in biological systems [2] is largely due to selective complex formation between the antibiotics and alkali metal cations. Considerable effort has been made to understand the carrier-mediated alkali cation transport across cellular membranes on the basis of the characteristics of such antibiotics [3] [4] and model compounds [5–8]. For a detailed study [7] the free energy (ΔG^{0}), enthalpy (ΔH^{0}), and entropy (ΔS^{0}) of complex formation with cations had to be measured. Because of sample limitations we have replaced the precision thermometric titration calorimeter [5] by a microcalorimetry system [9] with an on-line computer as suggested earlier [10].

2. Instrumentation. – The signal of the thermopile of a batch microcalorimeter¹) is boosted by a DC amplifier²) and simultaneously fed into a recorder/integrator³) as

¹⁾ Model 10700-2, LKB-Produkter AB, Bromma, Sweden.


²) Microvolt Ammeter, 150 B, Keithley Instruments, Inc., Cleveland, Ohio, USA.

³) Recorder model SRG (E. H. Sargent & Co., Chicago, Ill., USA) equipped with an integrator (DISC model 204-DM, Disc Instruments, Inc., Santa Ana, Calif. USA).

well as a 12-bit analog digital converter⁴) connected to a dedicated computer⁵) (see fig. 1). The signals (see fig. 2) are integrated numerically (integrals I) and either of two corrections, based on disparate assumptions, is applied. The results are thus printed by the teletype:

Symmetric correction (S in fig.2):
$$I_{\rm S} = F_2 - 3 \frac{F_1 + F_3}{2}$$
. (1)

Asymmetric correction (A in fig.2): $I_{\mathbf{A}} = \mathbf{F}_{\mathbf{2}} - 3\mathbf{F}_{\mathbf{3}}$. (2)

Fi.g 1. Computerized Microcalorimeter System

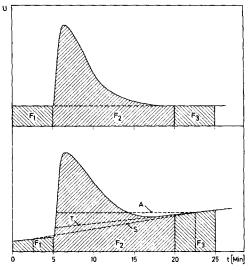


Fig. 2. Integration of Typical Signals of Microcalorimeter

- 4) Model AF01 A (Digital Equipment Corporation, Maynard, Mass., USA).
- ⁵) PDP-8/I, 12 bit, 4K with real time clock (*Digital Equipment Corporation*, Maynard, Mass., USA); program by F. Erni and P. U. Früh.

To eliminate errors due to drift and/or shift of the base-line, values are accepted only if $I_{\rm S}$ and $I_{\rm A}$ do not differ by more than 1.5% (above 50 mJ) for actual runs and 1.0% for electric calibration. For signals below 50 mJ the deviations may be larger; a check of the recorded trace reveals the most adequate value (closest to T in fig. 2): $I_{\rm S}$, $I_{\rm A}$ or $(I_{\rm S} + I_{\rm A})/2$.

3. Calibration, Accuracy, and Reproducibility of the Computerized Microcalorimeter. - The reproducibility and the accuracy of the system were studied using the protonation of α -picoline in water (constant ionic strength $\mu = 0.1$ (KNO₃)) [11] (results of electrical calibration see tab. 1). Obviously the computer is superior to the DISC integrator except for signals around 5 mJ where the reproducibility of the calorimeter becomes poorer than that of the DISC integrator. For signals larger than 20 mJ numerical integration gives differences between $I_{\rm S}$ and $I_{\rm A}$ that are 5-6 times smaller than those obtained with the DISC integrator, therefore the latter represents the overriding source of error. The protonation of α -picoline (2 ml) with nitric acid (4 ml, both same molality; control by titration) in water at 25°C, gave relative standard deviations of 0.6, 0.9, 2.5, and 1.7% for measured heats of 5000, 500, 50, and 5 mJ respectively. Values of ΔH^0 of -26.37, -26.31, and -24.60 kJ \cdot mole⁻¹ for sample concentrations between 10^{-1} to 10^{-3} M were obtained showing deviations of -0.6. -0.4, and +6.1% from the value $\Delta H^0 = -26.2 \text{ kJ} \cdot \text{mole}^{-1}$ found by Anderegg & Wenk [11]. Below 50 mJ use of calibration materials of the electrically neutral ligand type [5] [12] is suggested⁶).

Integration		Reproduci	bility for sig				
		5000 m J	500 m J	50 m J	5 m J		
DISC	Is	1.6	3.2	1.4	1.0		
	$I_{\mathbf{A}}$	0.8	0.8	0.6	1.2	Relative standard	
Compute	er Is	0.3	0.4	0.6	1.8	deviation of single calibration integral (%	
	IA	0.5	0.6	0.5	1.8	campiation integral (70)	
DISC		1.2	3.0	1.5	2.5	Relative difference	
Comput	er	0.2	0.5	0.2	2.2	between mean values $\overline{I}_{ m S}$ and $\overline{I}_{ m A}$ (%)	

 Table 1. Reproducibility of Electrical Calibrations of the Computerized Microcalorimeter Performed

 before and after the Reaction Run

Repeated runs with equal amounts of pure solvent in both cells to determine the heat of friction generated in mixing show (even after 3 h of thermostation) that upon subtraction of this term (final constant value) there remains a 'hidden' contribution (0-1 mJ) probably due to temperature gradients. Although extrapolations are possible, uncertainties up to 0.3 mJ have to be expected.

4. Measurements of Thermodynamic Data on Carrier Antibiotics. $-4.1. \Delta H^0$: The enthalpy ΔH of the reaction of a ligand L (antibiotic) with a metal cation M

⁶) Due to uncontrollable parameters the protonation of α -picoline is not suited for testing the range below 50 mJ.

[equ. (3)] with the concentration dependent formation constant K' [equ. (4)] can be

$$L + M \xrightarrow{} ML$$
(3)

$$K = \frac{a_{\rm ML}}{a_{\rm L} \cdot a_{\rm M}} = K' \frac{f_{\rm ML}}{f_{\rm L} \cdot f_{\rm M}} \tag{4}$$

a: activities; f: activity coefficients.

obtained directly through a measurement with an excess of M⁷).

4.2. K': An additional measurement is necessary for K' [equ. (5)] where q is the measured heat per kg of solvent. Fig. 3 shows that optimal information is provided by

$$K' = \frac{q/\Delta H_0}{(c_{\mathbf{M},\mathbf{TOT}} - q/\Delta H^0) (c_{\mathbf{L},\mathbf{TOT}} - q/\Delta H^0)}$$
(5)
$$c_{\mathbf{M},\mathbf{TOT}} = c_{\mathbf{ML}} + c_{\mathbf{M}}; c: \text{ concentrations [mole kg^{-1}]}; c_{\mathbf{L},\mathbf{TOT}} = c_{\mathbf{ML}} + c_{\mathbf{L}}; c_{\mathbf{ML}} = q/\Delta H^0,$$

measurements with approximately equal amounts of ligand and cation, the deviation from the curve with infinite formation constant there being a maximum.

K may be obtained by extrapolation of a set of K'-values to $\mu = 0$ or by applying estimated or independantly determined activity coefficients (for instance by vapour pressure osmometry [13]).

$$\Delta G^{0}, \Delta S^{0}, \text{ are given by } \Delta G^{0} = -RT \ln K$$
 (6)

$$\Delta S^{\mathbf{0}} = (\Delta H^{\mathbf{0}} - \Delta G^{\mathbf{0}}) \cdot \frac{1}{T}.$$
(7)

To avoid too large metal salt concentrations, incomplete complexation and therefore too small values of ΔH may be corrected by iteration.

5. Experimental Details. - Solvent: Methanol (puriss. p.a., Fluka AG, Buchs), dried by refluxing with magnesium and distillation.

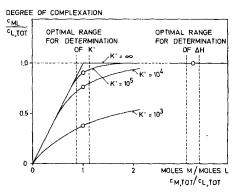


Fig. 3. Optimal Ranges for the Determination of Thermodynamic Parameters of 1:1 Complexes $(c_{L,TOT} = 10^{-3} m)$

⁷) Since the concentration dependence of ΔH is small, the determined values ΔH can be assumed to be equal to the thermodynamic ΔH^0 within the accuracy of the method.

Inorganic salts: Sodium thiocyanate (Fisher Certified Reagent, 99.7%, Fisher Scientific Company, Fair Lawn, N.J., USA) and potassium thiocyanate (pro analysi, >99%, E.Merck AG, Darmstadt, Germany), both dried 12 h at $70^{\circ}/10^{-3}$ Torr.

Antibiotics: Nonactin⁸), monactin⁸), and commercial valinomycin (A grade, Calbiochem, Los Angeles, Calif., USA). Monensin: prepared form the CHCl₃ solution of the sodium salt⁸) with 0.1 M HCl, crystallized from water/acctone, and dried 12 h at $25^{\circ}/10^{-3}$ Torr. The calorimetric measurements on monensin were made using solutions in methanolic $5 \cdot 10^{-2} m$ (m: molal) tributylamine (puriss., Fluka AG, Buchs).

α-Picoline: Commercial product (purum, Fluka AG, Buchs), doubly distilled.

Measurements. – Determination of ΔH : a ratio $c_{M,TOT}/c_{L,TOT}$ of 100 or 10 depending on the value K expected was selected using approx. 2 ml of $10^{-3} m$ antibiotic solution.

In determining K' the degree of complexation should remain as small as possible; therefore $c_{M,TOT} = c_{L,TOT}$, with concentrations chosen so as to obtain a signal of at least 20 mJ. The concentration was about $1-5 \cdot 10^{-3} m$ (approx. 2 ml solution each). The enthalpy of dilution for the ligand was determined separately while the corresponding value for the salt was either obtained in such a separate experiment or compensated for by simultaneous dilution in the reference cell. The quantities of solvent or solution were determined by weighing the liquids in the syringe. The measurements were effected at 25°C.

			-			
Antibiotic	Cation	⊿Hº [kJ/mole]	⊿G ⁰ [kJ/mole]	⊿S⁰ [kJ/mole K]	Ka) [kg/mole]	Literature
Nonactin	K+ K+ Na+	- 45.9 - 14.2	- 24.8	- 0.071	$\begin{array}{c} 2\cdot10^{4} \\ 5\cdot10^{3} \end{array}$	[8] [14]
Monactín	Na+ Na+	-22.4 -25.1	·········		<u> </u>	[3]
Monensin	K+ K+	- 16.2	- 25.6	+ 0.031	3 · 10 ⁴ 2 · 10 ⁴ ^b)	[15]
Valinomycin	K+	- 19				

Table 2. Thermodynamic Parameters for 1:1 Complexes with Carrier Antibiotics (Methanol, 25°C)

a) Activity coefficients: determined by vapour pressure osmometry [13] for the inorganic salts; estimated for the charged ligand or complex by the *Debye-Hückel* approximation.

b) Redetermined using a carefully prepared and handled solvent.

6. Results; Error Analysis. – The results (given in table 2 together with some literature data) will be discussed elsewhere.

Error analysis for the determination of ΔH and K: If X is a function F of the mutually independent parameters A_1

$$X = \mathbf{F}(A_{\mathbf{i}}) \tag{8}$$

then its variance V(X) is given by [16]

$$V(X) = \sum_{i} \left(\frac{\partial F}{\partial A_{i}}\right)^{2} \cdot V(A_{i})$$
(9)

where $V(A_i)$ is the variance of the parameter A_i .

⁸) We are indepted to Dr. H. Bickel, CIBA-GEIGY AG, Basel, and to ELI LILLY & Co., Indianapolis, USA, for generous gifts of macrotetrolides and monensin sodium salt (370-559-AD-291), respectively.

The evaluation of the errors due to the different parameters shows that for ΔH only the errors in the heats Q (measured) and Q (dilution, salt) contribute appreciably to the total error. If the correction for Q (dilution, salt) is made by the simultaneous dilution method, the total error decreases by a factor of about 10, Q (measured) now being in the same order of magnitude as Q (complexation). Therefore the precision of the microcalorimeter is the factor limiting the precision of ΔH , Q (reaction), and K. For approximate values of ΔH and K (-40 kJ \cdot mole⁻¹ and 10⁴ kg \cdot mole⁻¹) relative standard deviations of 4 and 20% respectively have been calculated. Comparison of several independent sets of experimental values suggests errors originating from uncontrolled sources (humidity of solvent, purity of reagents, etc.).

We thank Mr. K.H. Schellenberg and Mr. M. Reinhard for the determination of the values in table 2, and Mr. T. Meier and Mr. W. Sauter for their help in constructing the interface between microcalorimeter and computer.

This work was carried out with the financial support of the «Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung».

BIBLIOGRAPHY

- [1] Z. Štefanac & W. Simon, Chimia 20, 436 (1966); Microchem. J. 12, 125 (1967).
- [2] C. Moore & B.C. Pressman, Biochem. biophys. Res. Commun. 15, 562 (1964); B.C. Pressman,
 E. J. Harris, W.S. Jagger & J. H. Johnson, Proc. nat. Acad. Sci. U.S.A. 58, 1949 (1967);
 H. A. Lardy, S. N. Graven & S. Estrado-O, Fed. Proc. 26, 1355 (1967).
- [3] H. Diebler, M. Eigen, G. Ilgenfritz, G. Maass & R. Winkler, II. I.C.C.C., Haifa (1968); Pure Appl. Chemistry 20, 93 (1969); R. Winkler, Diss. TH Vienna, 1969, and private communication.
- [4] H.-K. Wipf & W. Simon, Helv. 53, 1732 (1970); V. T. Ivanov, I. A. Laine, N. D. Abdulaev, L. B. Senyavina, E. M. Popov, Yu. A. Ovchinnikov & M. M. Shemyakin, Biochem. biophys. Res. Commun. 34, 803 (1969).
- [5] R.M. Izatt, J.H. Rytting, D.P. Nelson, B.L. Haymore & J.J. Christensen, Science 164, 443 (1969).
- [6] H. K. Frensdorff, J. Amer. chem. Soc. 93, 600 (1971); R. Schwyzer, Aung Tun-Kyi, M. Caviezel & P. Moser, Helv. 53, 15 (1970).
- [7] W.E. Morf & W. Simon, Helv. 54, 794 (1971).
- [8] W. Simon & W. E. Morf, presented at the Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes, Granada, Spain, June 1-4, 1971 (in press).
 [9] I. Wadsö, Acta chem. scand. 22, 927 (1968).
- [10] W. Simon measured at the III Application Chemica
- [10] W. Simon, presented at the III. Analytical Chemical Conference, Budapest, August 24-29, 1970.
- [11] G. Anderegg & F. Wenk, private communication.
- [12] C. J. Pedersen, J. Amer. chem. Soc. 89, 7017 (1967); 92, 386 (1970); 92, 391 (1970); Fed. Proc., Fed. Amer. Soc. exp. Biol., 27, 1305 (1968).
- [13] Ch. Züst, Diss. ETH Zürich, 1972.
- [14] L.A.R. Pioda, H.A. Wachter, R.E. Dohner & W. Simon, Helv. 50, 1373 (1967).
- [15] W. K. Lutz, H.-K. Wipf & W. Simon, Helv. 53, 1741 (1970).
- [16] O.L. Davies, 'Statistical Methods in Research and Production'. Oliver and Boyd, London 1961.

1450